Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 26, 2025
-
Abstract Specificity and activity are often at odds for natural enzymes. In this work, specificity and activity in coronazymes made of an Au nanoparticle (AuNP) and coated with DNA aptamer for glucose substrates are decoupled. By single‐molecule fluorescent MT‐HILO (magnetic tweezers coupled with highly inclined and laminated optical sheet) microscopy, it is found that this coronazyme has ≈30 times higher activity on thed‐glucose compared to bare AuNP nanozymes. Significantly, the new coronazyme demonstrates long‐range modulations by circularly polarized light (CPL) according to the matching chirality between the CPL and DNA corona, which follows the rule of chiral induced spin selectivity (CISS). Although the aptamer in the coronazyme is evolved againstd‐glucose, surprisingly, this coronazyme catalyzesl‐glucose better thand‐glucose, likely due to the faster rates for the aptamer to interact with thel‐ overd‐glucose. These results demonstrate, for the first time, an artificial enzyme with its catalytic activity controlled by short‐range intermolecular forces, whereas its chiral specificity is modulated by long‐range CPLs. This decoupled arrangement is pivotal to forge premier catalysts with activity and specificity superior to natural enzymes by separately optimizing these two properties.more » « less
-
Mechanical unfolding of biomolecular structures has been exclusively performed at the single-molecule level by single-molecule force spectroscopy (SMFS) techniques. Here we transformed sophisticated mechanical investigations on individual molecules into a simple platform suitable for molecular ensembles. By using shear flow inside a homogenizer tip, DNA secondary structures such as i-motifs are unfolded by shear force up to 50 pN at a 77 796 s −1 shear rate. We found that the larger the molecules, the higher the exerted shear forces. This shear force approach revealed affinity between ligands and i-motif structures. It also demonstrated a mechano-click reaction in which a Cu( i ) catalyzed azide–alkyne cycloaddition was modulated by shear force. We anticipate that this ensemble force spectroscopy method can investigate intra- and inter-molecular interactions with the throughput, accuracy, and robustness unparalleled to those of SMFS methods.more » « less
An official website of the United States government
